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1 Properties of Subharmonic Functions

1.1 Local conditions equivalent to subharmonicity
Last time, we introduced the notion of a subharmonic function.

Theorem 1.1. Let u: ) — [—00,00) be upper semicontinuous. The following are equiva-
lent:

1. w is subharmonic.
2. If {lr —a| < R} CQ, then

1

u(a) < 5 n Pr(z — a,y)u(a +y)ds(y).

3. (local sub-mean value inequality): For every a € €,

1

< — u(a ds
| e (a+y)ds(y)

u(a

for all small R > 0.

4. For every a € €,

u@) < s | /m“(“ T y)dy

for all small R > 0, where dy is Lebesque measure in R?.

5. If{|lx —a] < R} C Q, then

u@) < s | /M“(“ T y)dy

Remark 1.1. It follows from properties 3 and 4 that subharmonicity is a local property.



Remark 1.2. The integrals in the theorem are Lebesgue integrals of upper semicontinuous
functions. If u :  — [—o0, 00) is upper semicontinuous and K C 2 is compact, then

/Ku(x)dx— inf /(pda:e[—oo,oo).

u<p
p€eC(K)

Proof. (1) = (2): Let f € C(Jx —a| = R), and let v € C(|x — a|] < R) be harmonic
in |z —al < Rsothat v= f along |x —a| =R. If u < f on |z —a|] = R, then u < v in
|lxr —a] < R. So

1

u(z) < 5
27 R Jyi=r

Pr(z —a,y)f(a+y)ds(y)
for |z —a| < R. Pick a sequence fi € C(|x —a| = R) such that f | u. apply this inequality
to every function in the sequence, and let & — oo by monotone convergence to get the
desired inequality.

(2) = (3): Take z = a.

(2) = (5): If {|z —a| < R}, then

1 2 )
u(a) < 271/0 u(a + re') dt

with 0 < r < R. Multiply by 2r and integrate over [0, R]. This gives us the area integral,
expressed in polar coordinates.

(5) = (4): This is a special case.

(3) = (1): Let K C Q be compact and h € C(K) N H(K?) such that u < h on 0K.
We want to show that « < h on K. The function v — h is upper semicontinuous on K and
satisfies the local sub-mean value inequality in K. We can prove the maximum principle
for w — h on K with the same proof as for harmonic functions: If M = maxy(u — h), then
the set {x € K : u(z) — h(xz) = M} is closed (as u — h is upper semicontinuous on K). We
get that maxyg u — h = maxgg < 0. Sou < h on K.

(4) = (1): The argument is similar to the proof of (3) = (1), using the local
sub-mean value inequality with respect to small discs rather than circles. ]

1.2 Mean value property and maximum principle

In the proof of the theorem, we also proved the following property.

Theorem 1.2 (mean value property for subharmonic functions). Let Q C R? be open and
bounded, and let u be upper semicontinuous on ) and subharmonic in 2. Then

maxu = maxu.
Q Elg)

We also have the following version of the maximum principle.



Theorem 1.3 (maximum principle for subharmonic functions). Let @ C R? be open and
connected, and let u be subharmonic Q. If u contains a global maximum on S, then it is
constant.

Proof. Let M = maxq u, and notice that the sets {u < M}, {u = M} are open. O

It is important to note that the maximum needs to be global. In this sense, subharmonic
functions are much less rigid than their harmonic counterparts.

Example 1.1. Here is an example where u attains a local maximum without being constant
in 2. Take u(z) = max(0,Re(z)).

1.3 Relationship to holomorphic functions

Proposition 1.1. Let Q C C be open, and let f € Hol(?). Then u = log|f] : @ —
[—00,00) is subharmonic in ).

Proof. We saw before that u is upper semicontinuous, and we shall check that for all a € €2,

1

<o 5 u(a +y)ds(y)
27 R Jyi=r (

u(a)

for all small R > 0. If f(a) = 0, then the inequality holds. If f # 0, then in a small simply
connected neighborhood of a, we can write u = Re(log(f)). Then u is harmonic near a
and the inequality holds with an equality for all R > 0. O

Next time, we will prove the following result.

Proposition 1.2. Let f € C(|z| < R)NHol(|z| < R). Assume that there exists a Lebesgue
measurable E C {|z| = R} of positive measure such that f|p =0. Then f =0 in |z| < R.
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